Multi-label relational classification via node and label correlation
نویسندگان
چکیده
منابع مشابه
Multi-label Classification via Feature-aware Implicit Label Space Encoding
To tackle a multi-label classification problem with many classes, recently label space dimension reduction (LSDR) is proposed. It encodes the original label space to a low-dimensional latent space and uses a decoding process for recovery. In this paper, we propose a novel method termed FaIE to perform LSDR via Feature-aware Implicit label space Encoding. Unlike most previous work, the proposed ...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملAir pollution prediction via multi-label classification
A Bayesian network classifier can be used to estimate the probability of an air pollutant overcoming a certain threshold. Yet multiple predictions are typically required regarding variables which are stochastically dependent, such as ozone measured in multiple stations or assessed according to by different indicators. The common practice (independent approach) is to devise an independent classi...
متن کاملOMNI-Prop: Seamless Node Classification on Arbitrary Label Correlation
If we know most of Smith’s friends are from Boston, what can we say about the rest of Smith’s friends? In this paper, we focus on the node classification problem on networks, which is one of the most important topics in AI and Web communities. Our proposed algorithm which is referred to as OMNIProp has the following properties: (a) seamless and accurate; it works well on any label correlations ...
متن کاملOn Label Dependence in Multi-Label Classification
The aim of this paper is to elaborate on the important issue of label dependence in multi-label classification (MLC). Looking at the problem from a statistical perspective, we claim that two different types of label dependence should be distinguished, namely conditional and unconditional. We formally explain the differences and connections between both types of dependence and illustrate them by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2018
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2018.02.079